Switching \＆Controls

Circuit Breakers

Selection Guide． 882
NRA Series 883
NRBM Series 893
NRC Series 900
General Instructions． 909
Internal Circuit Overview 909

Selection Guide

1. For dimensions, see end of each section.
2. UL recognized, applicable standard: UL1077, "Supplementary Protectors."
3. Not suitable for branch circuit protection.

File No. LR83454 NRC Series

NRA Series

Features:

- Available in 4 different styles
- Excellent overload and short circuit protection
- Small size and high-efficiency
- Life expectancy of over 10,000 operations
- UL1077 recognized "Supplementary Protectors"
- VDE certified to EN60934

c ${ }^{\circ}$
 File No. E68029

License \#116381

Rocker

Illuminated Rocker (with Neon lamp)

Specifications

Protection Method	Electromagnetic tripping
Internal Circuit	Series current trip
Number of Poles	NRAS and NRAN: 1, 2, 3 NRAR: 1
Rated Voltage	250 V AC, $50 / 60 \mathrm{~Hz}$, 65V DC
Rated Tripping Currents	$0.3 \mathrm{~A}, 0.5 \mathrm{~A}, 0.75 \mathrm{~A}$ $1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 7.5 \mathrm{~A}, 10 \mathrm{~A}, 15 \mathrm{~A}, 20 \mathrm{~A}, 25 \mathrm{~A}, 30 \mathrm{~A}$
Rated Interrupting Capacity	250 V AC, $50 / 60 \mathrm{~Hz}, 1,000 \mathrm{~A}$ 65 V DC, 1,000A
Auxiliary Contact	SPDT microswitch: 250 V AC, 5A (resistive load), 50V DC, 1 A (resistive load)
Alarm Contact	SPDT microswitch: 250 V AC, 5A (resistive load), 50V DC, 1 A (resistive load)
Reference Temperature	$25^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$ (avoid freezing)
Insulation Resistance	100M 2 (measured with 500V megger)
Dielectric Strength	Between main circuit terminals: $2,000 \mathrm{~V}$ AC, 1 minute Between main circuit and auxiliary contact: $2,000 \mathrm{~V}$ AC, 1 minute
Vibration Resistance	100N (approximately 10G) (10 to 100Hz)
Shock Resistance	1,000N (approximately 100G)
Life Expectancy	Minimum 10,000 cycles (at 6 operations per minute)
Termination	Main terminal: Quick-connect receptacle $0.250^{\prime \prime}$ (accepts M3.5 screw terminal adapter) Auxiliary contact, alarm contact: Quick-connect receptacle 0.080"
Illumination Voltage (NRAR illuminated units)	Neon: 120, 240 V AC, $50 / 60 \mathrm{~Hz}$

Part Numbering Guide

Part Number Codes: NRA Series

Information About Circuit Breakers

Time Delay Curve Descriptions

Time Delay Curve	NRA Application
AD, AA	Common curves used in molded-case circuit breakers.
BA	Response to overcurrent is quite fast. Suited for protection of semiconductor circuits with very little overload tolerance. If overcurrents are expected to flow, fuses may be required according to the circuit characteristics.
MD, MA	Suited for motor loads that draw high inrush currents lasting a considerable length of time.
With Inertia Delay (F)	Designed not to trip on 20 times the rated current (peak value) for a duration of 8ms. Suited for transformer and lamp loads that draw steep inrush currents.

Inertia Delay Description

Circuit breakers equipped with inertia delay do not respond to high inrush currents such as those produced by transformer, lamp, or motor loads, but perform specified interruption on rated overcurrents.

Specify inertia delay by inserting an "F" in the part number as shown in Part Number Guide on previous page.

Multi-Pole

Notes

Multi-pole types such as 2- or 3-pole should be assembled by IDEC.
Because of their characteristics, 1-pole breakers cannot be combined to provide multi-pole units.

Auxiliary and Alarm Contacts

Multi-pole units can incorporate auxiliary and alarm contacts.
Auxiliary and alarm contacts will not work with IDEC's DIN rail adapters.

Accessories

Part Numbers: NRA Mounting Accessories

	Description	Appearance	For Model	Number of Poles	Part Number	Remarks
	Panel Mount Flush Plate		NRAN NRAR NRAN NRAN	1-pole 2-pole 3-pole	NR31 NR32 NR33	Use of a flush plate makes snap-in mount possible for NRAN, and NRAR circuit breakers (tightening screws not necessary). Multiple units can mount in a single panel cut-out.
$\stackrel{\text { N }}{\stackrel{\circ}{0}}$	DIN Rail Plug-in Base		NRAS NRAN	1-pole 2-pole 3-pole 1-pole	NR21 NR22 NR23 NR211	1. Furnished with a hold-down spring. 2. Applicable only for series trip units up to 20 amps . 3. Not applicable for NRAR lighted series. 4. Not for use with circuit breakers incorporating auxiliary or alarm contacts.
	Surface Mount Plug-in Base		NRAS NRAN	1-pole	NUS1 NUS2 NUS3	
			NRAR	1-pole	NUS11	

Internal Circuits and Terminal Arrangements: NRAS and NRAN Series

Series Current Trip

Series Current Trip with Auxiliary Contacts

Series Current Trip with Alarm Contacts

Time Delay Curves (numerical equivalent)
Overcurrent - Time Delay Characteristics in Seconds (at $25^{\circ} \mathrm{C}$)

	Percent of Rated Current								
	Curve	100\%	125\%	150\%	200\%	400\%	600\%	800\%	1000\%
	AA	No trip	10-120	6-45	2.2-15	0.3-2	0.05-0.55	0.007-0.13	$0.005-0.04$
$\stackrel{0}{0}$	BA	No trip	0.75-10	0.45-3.5	0.22-1.3	0.045-0.22	0.012-0.12	0.005-0.06	0.004-0.03
¢	MA	No trip	60-900	30-260	9-70	1.5-8	0.18-2.5	0.009-0.25	$0.006-0.08$
	AD	No trip	10-130	6-55	2.6-20	0.5-3.5	0.12-1.4	0.008-0.1	0.005-0.05
	MD	No trip	35-400	20-200	7-60	$1.3-8$	$0.2-3$	$0.01-0.25$	0.006-0.08

1. All values above are in seconds.
2. Data in this table is equivalent to information presented in the time delay curves shown on page 888.

Time Delay Curves - NRA Series

DC Time Delay Curves

Resistance and Impedance Characteristics

Coil Data

Rated Current	DC Resistance	AC Impedance (50/60Hz)
	Curves AD, MD	Curves AA, BA, MA
0.3 A	9.67Ω	9.82Ω
0.5 A	3.24Ω	3.36Ω
0.75 A	1.45Ω	1.49Ω
1A	0.90Ω	0.92Ω
2 A	0.21Ω	0.21Ω
3 A	0.09Ω	0.092Ω
5 A	0.036Ω	0.036Ω
7.5 A	0.017Ω	0.018Ω
10 A	0.012Ω	0.012Ω
15 A	0.0066Ω	0.0068Ω
20 A	0.0048Ω	0.0048Ω
25 A	0.0043Ω	0.0043Ω
30 A	0.0036Ω	0.0041Ω

Tolerance $\pm 25 \%$ (up to 20A), $\pm 50 \%$ (25 A and over).

Voltage Drop Due to Resistance or Impedance

The internal resistance or impedance of a circuit breaker tends to be larger for a smaller rated current. Therefore, when circuit breakers with a small rated current are used, voltage drop should be taken into consideration. Internal resistance also varies with time delay curves, even at the same rated current. This should also be considered during installation.

Time Delay Curve and Ambient Temperature

Since NRA series circuit breakers employ an electromagnetic tripping system, the rated current (trip current) is not affected by the ambient temperature, but the time delay varies with the oil viscosity in the tube. Lower oil viscosity at higher temperatures results in shorter delay; whereas at lower temperatures, the delay will be prolonged. The time delay curves, shown starting on page 888 , are at $25^{\circ} \mathrm{C}$. Time delay curves can be corrected.

Dimensions

NRAN

-2-pole
-3-pole

NRAR

Panel Cut-Outs

NRAS Series

NRAR, NRAN

Accessory Dimensions

NRT: Screw Terminal Adapter (for use with NRA Series)

1. For use on main terminals only
2. Includes M3.5 clamp screw.

BNDN1000 Aluminum DIN Rail

NRBM Series
NRBM circuit breakers are the largest in rated current (1A to 50A) among the IDEC circuit breakers series. These small sized, high-efficiency breakers offer a variety of protection characteristics that can be widely employed for semiconductors, relay circuits, heater circuits, transformers, and solenoids.

Key features of the NRBM series include:

- Excellent overload and short circuit protection
- Small size and high efficiency
- Life expectancy of over 10,000 operations
- UL1077 recognized Supplementary Protectors
- VDE Certified to EN60934

c ${ }^{-1}$
 File No. E68029

General Specifications

Protection Method	Electromagnetic tripping
Internal Circuit	Series current trip
Number of Poles	1,2,3
Rated Voltage	250V AC, 50/60Hz, 65V DC
Rated Tripping Currents	Current trip: $1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 7.5 \mathrm{~A}, 10 \mathrm{~A}, 15 \mathrm{~A}, 20 \mathrm{~A}, 25 \mathrm{~A}, 30 \mathrm{~A}, 40 \mathrm{~A}, 50 \mathrm{~A}$
Rated Interrupting Capacity	$\begin{aligned} & 250 \mathrm{~V} \text { AC, } 50 / 60 \mathrm{~Hz}, 1,000 \mathrm{~A} \\ & 65 \mathrm{~V} \text { DC, } 1,000 \mathrm{~A} \end{aligned}$
Auxiliary Contacts / Alarm Contact	SPDT microswitch 250V AC, 5A (resistive load) 50 V DC, 1 A (resistive load)
Reference Temperature	$25^{\circ} \mathrm{C}$
Ambient Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$ (avoid freezing)
Insulation Resistance	100M 2 (measured with 500V megger)
Dielectric Strength	Between main circuit terminals: $2,000 \mathrm{~V}$ AC, 1 minute Between main circuit and auxiliary contact: $2,000 \mathrm{~V}$ AC, 1 minute
Vibration Resistance	100N (approximately 10G), 10 to 55Hz
Shock Resistance	1,000N (approximately 100G)
Life Expectancy	10,000 operations minimum (at 6 operations per minute)
Terminal Style	Main terminal: M5 stud Auxiliary contact/ alarm contact: Quick-connect tab 0.110" terminal
Weight	1-pole/100g 2-pole/200g 3 -pole/300g

Part Numbering Guide

Part Number Codes: NRA Series

		Description	Part Number Code	Remarks
	(1) No. of Poles	1-pole	1	All multiple pole circuit breakers are simultaneous throw/simultaneous break. All levers are mechanically interlocked.
		2-pole	2	
		3 -pole	3	
	(2) Internal Circuit	Series current trip	1	
	(3) Auxiliary and Alarm Contacts	Without	00	
		With auxiliary contact	11	Auxiliary contacts change state with lever and/or overload condition
		With alarm contact	21	Alarm contacts change state only with overload condition
	(4) Inertia Delay	Without inertia delay	Blank	
		With inertia delay	F	
	(5) Rated Current	Rated current (current trip)	$1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 7.5 \mathrm{~A}, 10 \mathrm{~A}, 15 \mathrm{~A}$, 20A, 25A, 30A, 40A, 50A	
	(6) Time Delay Curve	AC curves	AA, BA,MA	See page 897 for delay curves.
		DC curves	AD, MD	

1. For NRBM series time delay curves, see page 897.
2. For NRBM series dimensions, see page 899.
3. Not suitable for branch circuit protection.
4. UL recognized, applicable standard: UL1077, "Supplementary Protectors."

Information About Circuit Breakers

Time Delay Curve Descriptions

Time Delay Curve	\quad NRBM Application
AD, AA	Common curves used in molded-case circuit breakers.
BA	Response to overcurrent is quite fast. Suited for protection of semiconductor circuits with very little overload tolerance. If overcurrents are expected to flow, fuses may be required according to the circuit characteristics.
MD, MA	Suited for motor loads that draw high inrush currents lasting a considerable length of time.
With Inertia Delay (F)	Designed not to trip on 20 times the rated current (peak value) for a duration of 8ms. Suited for transformer and lamp loads that draw steep inrush currents.

Inertia Delay Descriptions

Circuit breakers equipped with inertia delay do not respond to high inrush currents such as those produced by transformer, lamp, or motor loads, but perform specified interruption on rated overcurrents.

Inertia delay is available with time delay curves $A D, M D, A A, B A$, and $M A$.
Specify inertia delay by inserting an "F" in the part number as shown in Part Number Guide on previous page.

Multi-Pole

Notes

Multi-pole types such as 2- or 3-pole should be assembled by IDEC.
Because of their characteristics, 1-pole breakers cannot be combined to provide multi-pole units.
All multi-pole units are simultaneous break/simultaneous make, with levers mechanically interlocked.

Auxiliary and Alarm Contacts

Multi-pole units with auxiliary contacts will have one set of auxiliary contacts on the right-most breaker. Multi-pole units with alarm contacts will have one set of alarm contacts on the left-most breaker.

Internal Circuits and Terminal Arrangements

Series Current Trip with Auxiliary Contacts

Series Current Trip with Alarm Contacts

Time Delay Curves (numerical equivalent)
Overcurrent - Time Delay Characteristics in Seconds (at $25^{\circ} \mathrm{C}$)

1. All values above are in seconds.
2. Data in this table is equivalent to information presented in the time delay curves shown on page 897.

AC Time Delay Curves

DC Time Delay Curves

Current (percent load of the rated current)

Resistance and Impedance Characteristics

Voltage Drop Due to Resistance or Impedance

The internal resistance or impedance of a circuit breaker tends to be larger for a smaller rated current. Therefore, when circuit breakers of a small rated current are used, voltage drop should be taken into consideration. Internal resistance also varies with time delay curves, even at the same rated current. This should also be considered during installation.

[^0]
Dimensions: NRBM Series

NRBM

Panel Cut-Outs

NRBM Series

NRC Series

UL Recognized
File No. E68029
CSA Certified File No. LR83454

Specifications

Not suitable for branch circuit protection.

Part Numbering Guide

NRC series part numbers are composed of 5 part number codes. When ordering an NRC series part, select one code from each category.
Example: NRC 11 1L-30A-AA
NRC

Part Number Codes: NRA Series

1. For NRC series accessories, see page 902.
2. For NRC series time delay curves, see page 903 .
3. For NRC series dimensions, see page 905 .

Accessories

For dimensions of NRC series accessories, see page 907.

Internal Circuits and Terminal Arrangements

Type	1-pole without auxiliary contact	1-pole with auxiliary contact	2-pole without auxiliary contact	2-pole with auxiliary contact
	NRC110, NRC110L	NRC111, NRC111L	NRC210L	NRC211L
Series Trip				

Time Delay Curves (numerical equivalent)

Overcurrent - Time Delay Characteristics in Seconds (at $40^{\circ} \mathrm{C}$)									
	Percent of Rated Current								
	Curve	100\%	125\%	150\%	200\%	400\%	600\%	800\%	1000\%
	AA	No trip	40-240	10-50	3.5-18	$0.9-4$	0.35-2	0.07-1.2	0.01-0.5
	EA	No trip	0.04-0.4	$0.025-0.15$	$0.015-0.06$	$0.007-0.025$	$0.005-0.018$	$0.004-0.017$	$0.004-0.017$
O	AD	No trip	40-240	10-50	$3.5-18$	$0.6-3$	0.008-0.5	0.005-0.09	0.004-0.07
	ED	No trip	0.04-0.4	0.025-0.15	$0.015-0.06$	$0.007-0.025$	$0.005-0.018$	$0.004-0.017$	0.004-0.017

Time Delay Curves

Resistance and Impedance Characteristics

Rated Current	AC Impedance (50/60Hz)	DC Resistance
0.30A	15.1』	25.6Ω
0.50A	5.58Ω	9.04Ω
1A	1.54Ω	2.33Ω
2 A	0.341Ω	0.548Ω
3 A	0.162Ω	0.261Ω
5A	0.061Ω	0.099Ω
7A	0.031Ω	0.048Ω
10A	0.017Ω	0.026Ω
15A	0.008Ω	0.013Ω
20A	0.0058Ω	0.0075Ω
30A	0.0039Ω	0.0046Ω

Tolerance: $\pm 10 \%$ (0.3 A to 3 A), $\pm 25 \%$ (5 A to 30A).

Voltage Drop Due to Resistance or Impedance

The internal impedance of a circuit breaker tends to be larger for a smaller rated current. Therefore, when low rated circuit breakers are used, voltage drop should be taken into consideration.

AC Impedance at $40^{\circ} \mathrm{C}$

DC Resistance at $40^{\circ} \mathrm{C}$

Temperature Correction Curves

Dimensions: NRC Series

NRC110

Slide Actuator
1-Pole without Auxiliary Contacts

NRC110L
Lever Actuator
1-Pole without Auxiliary Contacts

Dimensions: NRC Series, continued

NRC111L

Lever Actuator
1-Pole with Auxiliary Contacts

NRC210L
Lever Actuator
2-Pole without Auxiliary Contacts

NRC211L
Lever Actuator
2-Pole with Auxiliary Contacts

Panel Cut-Outs

NRC Series

Surface Mounting Hole Layout 1-Pole

Surface Mounting Hole Layout 2-Pole

Accessory Dimensions

Accessory Dimensions, continued

BNDN1000 Aluminum DIN Rail

	Length in Inches (mm)
A	$1.4^{\prime \prime}(35 \mathrm{~mm})$
B	$1.14^{\prime \prime}(29 \mathrm{~mm})$
C	$0.78^{\prime \prime}(23 \mathrm{~mm})$
D	$1.2^{\prime \prime}(31 \mathrm{~mm})$
E	$0.41^{\prime \prime}(10.5 \mathrm{~mm})$
F	$0.11^{\prime \prime}(3 \mathrm{~mm})$
G	$2^{\prime \prime}(51 \mathrm{~mm})$
H	$0.47^{\prime \prime}(12 \mathrm{~mm})$
K	$0.16^{\prime \prime}(4 \mathrm{~mm})$

Instructions: All Series

Genera

IDEC's circuit breakers have been developed for the protection of electrical circuits and small-sized electrical equipment and provide excellent protection against overloads and short-circuits.

Additionally, IDEC's circuit breakers are designed to suit specific needs. Each series offers unique circuit protection characteristics and a choice of actuator styles.

IDEC's Circuit Breaker Features

- Various models are available with different tripping characteristics and rated currents
- 1- to 3-multi-pole
- Inertia delay
- Auxiliary contacts and alarm contacts
- The electromagnetic tripping system is not affected by ambient temperature
- Safe trip-free mechanism
- Vibration- and impact-resistant design
- When using accessories such as plug-in bases, flush plates, and colored caps, a variety of mounting styles is possible - such as DIN rail mounting, snap mounting into panel cut-outs, and color-coded arrangement on the panel

Mounting Instructions: Installation Angle

Designed to be mounted on a vertical surface, the circuit breakers should be mounted on a surface within 10° of the vertical plane. If the circuit breaker is mounted on a horizontal surface or at any angle other than the specified angle, its characteristics will be changed.

Multi-Pole Assemble

Multi-pole types such as 2- or 3-pole should be assembled by IDEC. Because of their characteristics, 1-pole breakers cannot be combined to produce multi-pole units.

Applications

The IDEC NRA circuit breaker series features superior overload and short-circuit protection. Many combinations of protection mechanisms and internal circuit connections enable wide applications.

- Precision measuring instruments: electronic counters, projection instruments, oscilloscopes, industrial instrumentation, and analytic devices
- Industrial machinery: printers, elevators, cranes
- Chemical and food industry machines: vacuum devices, wrappers, centrifuges, agitators
- Machine tools: mill grinders, drills, presses
- Business machines: vending machines, beauty salon equipment, entertainment games
- Other: office equipment, air-conditioners, conveyor belts, and many more

How the Breaker Operates

IDEC's hydraulic magnetic circuit breakers operate like a solenoid coil. The coil unit consists of an oil-filled tube with a metal core at one end and a pole piece and armature at the opposite end with a spring in between.

When a current load passes through the coil winding, it creates a magnetic field. As long as the current load is either at or below the nominal rating of the breaker, the metal core will remain stationary.

If the current load increases beyond the nominal rating, the strength of the magnetic field causes the core to move toward the pole-end of the tube. The oil viscosity regulates the core's movement through the tube, thereby regulating the time delay. As the percentage of current load increases, the required trip time of the breaker decreases and vice versa.

When the current reaches the overload rating, the metal core will meet the pole piece at the opposite end of the tube. At this point, the armature is attracted to the same pole piece, tripping the breaker.

In case of sudden short circuit, the magnetic field created will instantly trip the breaker.

Internal Circuits Overview

Series Trip
This is the most common circuit breaker, providing overload and short circuit protection. It
can also be used as an ON/OFF switch.

[^0]: Time Delay Curve and Ambient Temperature
 Since NRBM series circuit breakers employ an electromagnetic tripping system, the rated current (trip current) is not affected by the ambient temperature, but the time delay varies with the oil viscosity in the tube. Lower oil viscosity at higher temperatures results in shorter delay; whereas at lower temperatures, the delay will be prolonged. The time delay curves, shown starting on page 897, are at $25^{\circ} \mathrm{C}$. Time delay curves can be corrected.

